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It is well known that in the flow of a viscous incompressible fluid past a stationary 
wall there exists a traditional curve of neutral stability. This curve bounds a zone of in- 
stability for a Tollmien-Schlichting wave in the plane of values of the Reynolds number and 
wave number. There are a number of papers (see, e.g., [1-3]) wherein a study was made of 
the effect of pliability of the wall on the position of this neutral stability curve; 
studies have also been made (see [4, 5]) of the stability of an elastic body (of a half- 
space) in the flow of an ideal fluid (compressible and incompressible). In particular, notice 
has also been taken of an increase in the stability of a laminar flow (a delay in the transi- 
tion to a turbulent regime) and the appearance of new forms of instability of Kelvin--Helm- 
holtz type or of hydroelastic flutter. 

In the present paper we examine the combined oscillations of an elastic layer (of a half- 
space) and the viscous incompressible fluid flow over it. We find, in this connection, 
that it is possible to have a new type of instability, a limiting state of which, for a de- 
crease in the relative density of the flow, is a Rayleigh wave in the elastic body. 

In domain G 2 (upper halfspace) we consider a two-dimensional (in the x0z plane) flow 
of an incompressible viscous fluid flowing over an elastic lower halfspace (domain G z) in 
which, under the action of a variable pressure, surface waves arise. Flow of the fluid is 
described by the linearized Navier-Stokes equations with velocity components v x and v z and 
pressure p, which represent small deviations from the main unperturbed flow with parameters 
u = U(z), v = 0, P = P(x). 

Let U 0 be the speed of the unperturbed flow along the x axis at infinity; let P2 be 
the density of the fluid. Velocity components are related to the stream function ~ through 
the relations v x = 8~/3z, v z = -3~/8x. 

Assuming only flow perturbations periodic in the x direction, we represent the stream 
function in the running wave form 

w h e r e  u i s  a d i m e n s i o n l e s s  wave  n u m b e r ;  m i s  t h e  f r e q u e n c y  o f  t h e  o s c i l l a t i o n s .  A l l  t h e  
remaining variable parameters of the flow and of the elastic body over which the flow takes 
place will be assumed proportional to a harmonic of the same form 

0(~,  z, t) = ~ ( z ) o i ~ - ~ t .  (i) 

I n  d o m a i n  G= we a l s o  c o n s i d e r  a b o u n d a r y  l a y e r  t h i c k n e s s  60 ,  s u c h  t h a t  U ( 6 0 )  = Uo. 
The problem for perturbation of velocities may be reduced to the well-known Orr-Sommerfeld 
equation 

(U - -  c) (~" - -  ~ )  - -  U " ~  = i (~tv _ 2~2~. + ~4~). ( 2 )  
Re 

Here c = m/~ is the phase velocity; Re = U06/v is the Reynolds number; 6 = 60/q (q = 6.2 
according to [6]); v is the coefficient of kinematic viscosity; U 0 and 6 are taken to be 
characteristic magnitudes (of velocity and length). 

Conditions for decay of the perturbations at infinity 

q, ~ 0, q / - +  0 (z --+ oo) (3) 
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are more suitably replaced (for technical reasons) by equivalent conditions on the finite 
boundary z = 60; this was done, as in [7], starting from the following considerations. When 

the speed of the principal flow is constant (U 0 = i) for z ~ 6o, then U" = O. Moreover, Eq. 
(2) has a solution satisfying the conditions (3): 

,r. ~ c , o - v :  ,- c._,e-~.,, (v I / 7 ( i  l~,~ (t  - ~) - -  ~) ). 

The equation reconstructed from this solution 

m" ! - ( ~  : Y),p' i ~Ym~-:o (4) 

and the equation resulting from differentiating it 

m" '  ! (~ I- ~,),l," -! ~y,~'  0 ( 5 )  

are, in fact, the desired "soft" boundary conditions indicating a smooth transition for z = 
60 of the solution of Eq. (2) in the boundary layer into a solution outside the boundary 
layer, which satisfies conditions (3) at infinity. 

On the boundary of the flow with the elastic body conditions for adhesion to the moving 
boundary w are satisfied: 

~cO o ') (z u 0 ( 6 )  <)--~- .... ~x, -- ioup = v~ = 

(v~ = Ux, v~ = u z are the displacement rates on the boundary of the elastic body). Rates on 
the fixed boundary can be represented in the form of expansions 

o I ,.I 
k 02. ) z .  lo 

0 f Oi'a, ] 
(.~-)~=o :-- ,~ - ,,, T-~-~ ) . . . . .  + o ( ,v~) .  

Taking into account the type of solution assumed in Eq. (i), it follows that w ~ v~/m. 
Assuming the frequency m to be bounded in absolute value (from above and below) and 

assuming Vz, v x << i, we can neglect the products w(Svz/Sz) w and w(Svx/aZ) w in these expan- 
sions since v z, 8vz/az, 8Vx/SZ , in the linear setting of the problem adopted here, may be 
considered small. Hence the conditions (6) can be carried down to the unperturbed boundary 
z=0. 

To determine v~ and v~ it is necessary to consider the problem involving propagation 
of a wave into the elastic halfspace G l under the action of a pressure wave generated in the 
domain G 2 . 

In accordance with [8], for the domain G 2 we write the equation of motion 

02"I - -  c~Aul  - 0 ,  a~'5 - -  cTAut  0; ( 7 )  
ot  z Ol z 

( l i v  u t  O, rot, l,t i : O, (8) 

where u~ and u t are dimensionless displacement vectors; cs and c t are compression and shear 
wave deformation rates. Physical displacements in the direction of the x and z axes 

l ;,v ~'Q.v UZ.v: b~z = LQz ~;~z ( 9 )  

arise in the domain G l as the result of the action of perturbations in the flow. Unperturbed 
background flow in domain G 2 gives rise in domain GI to constant background deformations, 
which we shall not consider here. 

Assuming that i//Re << i, e < 1 or ~ ~ 1 on the boundary z = O, the tangential stresses 
in the viscous fluid may be assumed to be negligibly small, i.e., 

~ . :  o. ( 1 o )  
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Similarly, we can dispense with the viscous term in the normal stress 

or:: : --p(:r,  (I, l)/p (11) 

(Oxz, Ozz are stresses in the elastic body). At an infinite distance from the flowed-over 
boundary (for z = -~) we take the decay conditions 

u.~ := O, u: == O. (12) 

The solutions U~x , U~z , Utx , Utz [in the form of the wave (i)] of the system (7), (8) with 
the boundary conditions (10)-(12) enable us to find u x and u z from relations (9) and, 

0 and v~ from equations (6) in the form hence, v x 

0 I" v z = : - - i m a p ,  ~ =  . . . .  hobp ~r z =0  (13)  

[p (x ,  O, t )  i s  t h e  p r e s s u r e  o f  t h e  p e r t u r b e d  f low on t h e  b o u n d a r y ] ;  

e~p /p(l -- • r (..~_~)2 (14) 
~ .~  , t~ ~ , ~  , •  i -  ; 

A : (1 + ~)-" - ~ ? ,  p -= p.,/p~. ( 1 5 )  

Expressing p on the boundary from the linearized Navier-Stokes equations, we can obtain the 
following from relations (13): 

a c  + c + q / ( 0 )  + U '  (0) ~p (0) - -  q~ (0) = O; 

, �9 [ ;  

tp (0) + ~c~ y .  q~ (0) .... O. (17) 

Thus we have posed the following homogeneous boundary value problem: the Orr-Sommerfeld 
equation (2) with boundary conditions (4), (5) for z = 6 o and relations (16), (17) for z = 0. 
Here c = m/~ is a characteristic value whose imaginary part c i defines the decrement (incre- 
ment for c i < 0) of decrease (of increase) of the wave ampiitude, while the real part c r is 
the phase velocity of this wave. 

If the expression A = 0,'where A is given by relation (15), is considered as an equation 
in ~ = c/ct, its solution ~ = $0 = 0.955 gives the phase velocity of the Rayleigh surface 
wave in the elastic body with a free boundary [8]. 

Thus, as can be seen from relations (14) and (15), if as p § 0, ~ § $0 simultaneously, 
pulsations in the velocity on the boundary w may remain finite and nonzero. This corresponds 
to a Rayleigh wave in both the elastic body and in the "degenerate" flow (p § 0). If as 
p § 0, $ tends towards a limit other than G0, so that & ~ 0, the pulsations in the velocity on 
the boundary w vanish. Such a solution is equivalent in the limit to a Tollmien--Schlichting 
wave in a flow over a fixed boundary. 

For a numerical study of the spectrum of the homogeneous problem (2), (4), (5), (16), 
(17) we employ here a method based on spline-collocation, developed in [9] for similar 
purposes, from which (with the kind consent of the author) we excerpted the program whose 
modification was used to obtain the numerical results presented here. 

The calculations presented below are of a purely methodical nature and are intended 
to illustrate the interaction of a flow with surface waves of a solid. They correspond 
roughly to flow over a body covered by a fairly thick layer of a rubbery material (for 
rubber, e.g., shear wave speed ~20 m/sec, density ~i000 kg/m3). The parameters used in our 
calculations, c t = 0.5 (c t is referred to U0) and p = i, are then stipulated by flow of 
water with speed ~40 m/sec. We assumed that c t << c~, so that the ratio ct/c ~ can be neg- 
lected. The quantities ~, = 1.72~, Re, = 1.72Re, namely, the wave number and the Reynolds 
number, are referred to the displacement thickness. 

Numerically, we singled out and studied two types of solutions: the traditional Toll- 
mien-Schlichting solution and the Rayleigh solution. Results of the first solution are 
shown in Fig. l, where the neutral stability curves 1-4 correspond to the values p = 0; 0.01; 
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0.05; 0.07. Visible here are the continuous smooth approaches of these curves, as p ~ O, to 
the well-known situation for the case of flow over a fixed surface. 

Figure 2 shows the dependence of the phase velocity c r on the density ratio p for 
Re = 360, e = 0.013 for Rayleigh and Tollmien-Schlichting solutions (curves 1 and 2, 
respectively). It is seen that as p § 0 (this is characterized by a clustering of the 
computed points) c r + 0.477 = ct~0~ This is precisely equal to the phase velocity of the 
free (i.e., without pressure) surface of the Rayleigh wave. 

Figure 3 shows the dependence on p of the increment of increase of the Rayleigh wave 
and the decrement of decay of the Tollmien-Schlichting wave (curves 1 and 2). It is 
characteristic (for curve I) that as p + 0, c i § 0 (observe the clustering of the computed 
points). Consequently, for the Rayleigh solution we obtain a wave whose phase velocity is 
equal to the phase velocity of free elastic oscillations, while the increment of increase is 
equal to zero. Hence, this confirms the fact that the first type of solution constitutes a 
reorganization of the free oscillations of the surface of the elastic body (Rayleigh wave) 
under the action of the viscous flow. 

Figure 4 displays the stability in the plane of the parameters ~,, Re, for the Nayleigh 
solution (Curve i). The little vertical dashes denote limits to the position of the 
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approximately calculated curve. The domain of stability is indicated by a minus sign; that 
of stability with a plus sign. For comparison we show th~ Tollmien-Schlichting stability 
loop (curve 2). A feature of the Rayleigh solution is that the domain of instability ex- 
tends for smaller Re, in comparison with the domain bounded bythis loop. Behavior of curve 
i for log Re, < 1.9 was not investigated on account of technical computational difficulties 
connected with the computational method adopted in our work. 

Figure 5 shows the dependence of the increment of increase c i on the wave number ~ for 
Re = 170; 660 (curves i and 2) for the Rayleigh type of solution. It should be noted that 
the most unstable are the long wave perturbations (with wave length on the order of three to 
ten boundary layer thicknesses). 

The numerical results and conclusions obtained here can turn out to be useful in formulating 
studies (experimental, analytical, or numerical) with the aim of generating specified waves 
of finite amplitude on the surface of elastic bodies by choosing material parameters in 
accordance with the flow parameters. 

The author wishes to thank A. G. Sleptsov for the materials submitted and for his help 
in preparing this paper. 
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